The Frobenius problem for numerical semigroups
نویسنده
چکیده
In this paper, we characterize those numerical semigroups containing 〈n1, n2〉. From this characterization, we give formulas for the genus and the Frobenius number of a numerical semigroup. These results can be used to give a method for computing the genus and the Frobenius number of a numerical semigroup with embedding dimension three in terms of its minimal system of generators.
منابع مشابه
Frobenius numbers of generalized Fibonacci semigroups
The numerical semigroup generated by relatively prime positive integers a1, . . . , an is the set S of all linear combinations of a1, . . . , an with nonnegative integral coefficients. The largest integer which is not an element of S is called the Frobenius number of S. Recently, J. M. Maŕın, J. L. Ramı́rez Alfonśın, and M. P. Revuelta determined the Frobenius number of a Fibonacci semigroup, th...
متن کاملCounting numerical Semigroups with Short Generating Functions
This paper presents a new methodology to compute the number of numerical semigroups of given genus or Frobenius number. We apply generating function tools to the bounded polyhedron that classifies the semigroups with given genus (or Frobenius number) and multiplicity. First, we give theoretical results about the polynomial-time complexity of counting these semigroups. We also illustrate the met...
متن کاملMinimal genus of a multiple and Frobenius number of a quotient of a numerical semigroup
Given two numerical semigroups S and T and a positive integer d, S is said to be one over d of T if S = {s ∈ N | ds ∈ T} and in this case T is called a d-fold of S. We prove that the minimal genus of the d-folds of S is g + ⌈ (d−1)f 2 ⌉, where g and f denote the genus and the Frobenius number of S. The case d = 2 is a problem proposed by Robles-Pérez, Rosales, and Vasco. Furthermore, we find th...
متن کاملNumerical Semigroups Generated by Intervals
We study numerical semigroups generated by intervals and solve the following problems related to such semigroups: the membership problem, give an explicit formula for the Frobe-nius number, decide whether the semigroup is a complete intersection and/or symmetric, and computation of the cardi-nality of a (any) minimal presentation of this kind of numerical semigroups. A numerical semigroup is a ...
متن کاملNumerical Semigroups with a Monotonic Apéry Set
We study numerical semigroups S with the property that ifm is the multiplicity of S and w(i) is the least element of S congruent with i modulo m, then 0 < w(1) < . . . < w(m − 1). The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, emb...
متن کامل